Wednesday, May 22, 2019

Bioethics and gene patents

Among the most controversial issues in biotechnology over the last ten years has been the patenting of homophile DNA ranges as well as human elements. The medical, pharmaceutical along with economic interests at stake ar huge, making investments in biotechnology firms involved in broker patenting highly volatile. element patenting is a relatively broad term and refers to the patenting of individual processes that involves the isolation of DNA or other associated material and also to any chemical substance that is connect to DNA. The idea of agent patents has played a key role in the rapid growth of the biotech industry over the last dickens decades.The earliest of the broker patents were obtained back in 1978. One of the biggest issues involving biotechnology and the fair play is the patenting of human divisors. Beca example of advances in technology, it is relatively routine a procedure to isolate genes and determine their genetic sequence (Birren & Rommens 1999). With th e recent completion of the gracious Genome Project, we now know the accurate genetic sequence of the human genome. All that remains is for science to determine which portions of the sequenced genome correspond to existing genes (Eisen & Laderman 2007).For these reasons, the United subjects Patent and Trademark Office witnessed a tremendous increase in the number of patent applications for human genes. The number of applications more than doubled in the last ten years, from approximately 16,000 applications in 1990 to 33,000 applications in 2000, and in the last twenty years, the PTO has granted patents on about 1,000 human genes or gene fragments (Willing 2000). USPTO has issued a large number of patents for gene fragments. Full sequence as well as function is in many cases non known for the gene fragments world issued patents on.Many questions have arisen over when, from the discovery to development into viable products, the exclusive just to genes may be claimed. This is imp ortant as a patent lasts for 20 years. copulation exercised its powers under the Constitution to pass the Patent Act. Under the Patent Act, a patent gives one the in good order to exclude others from making, using, selling, or importing the patented blind in the United States beginning on the date on which the patent issues and ending 20 years from the date on which the application for the patent was filed. The 300- to 500-base gene fragments which are better known as expressed sequence tags (ESTs), make up about 10 to 30% of the mean cDNA, charm the genomic genes typic wholey go across to be 10 to 20 times bigger than the cDNA. A cDNA molecule is made in the laboratory and is a version of the gene which solely contains the information-rich (exon) regions these molecules offer a way to researchers to fast-forward through the genome get to more biologically significant body politics. The initial chromosomal locations as well as biological functions of the while genes identified by ESTs happen to be unknown in the majority of cases.The patenting of genes has been a controversial area to say the least. The argument is that patenting such discoveries is not justifiable because the effort to find a certain EST is meager when compared with the work of isolating and characterizing a gene and gene product, finding out what it does, and developing a commercial message product. They feel that allowing holders of such gatekeeper patents to exercise undue control over the commercial fruits of genome research would be unfair.Similarly, allowing doubled patents on different parts of the very(prenominal) genome sequence say on a gene fragment, the gene, and the protein adds undue costs to the researcher who wants to examine the sequence. Not only does the researcher have to pay each(prenominal) patent holder via licensing for the opportunity to study the sequence, he also has to pay his own staff to research the different patents and determine which are applicable to the area of the genome he wants to study. Some physicians believe that if a lot of genes receive patents, the genetic testing of patients could end up being prohibitively costly.Even though the technological friendship is there to develop such tests, a lot of work remains to produce them. And if the license fee that is associated with the use of each test is charged via multiple companies and entities, each owning multiple genes, then this technology may neer be exploited effectively in order to help patients. On the other hand, if rampart is not offered to the industry, then R & D write downs may not be recouped, therefore reducing incentive for investment in the industry. The implications of gene patenting on R & D have been the subject of considerable debate.Advocates say that gene patents like normal patents encourage the disclosure as well as dissemination of ideas by opening critical uses of gene sequences to the publicly domain. Patents also offer more incentives to i nvestors who may otherwise be reluctant to invest in ideas that may only when be copied by competitors if not allowed patent treasureion. Many argue that genes are not inventions, but rather they are discoveries which do not require an inventive effort. Because the discovery of genes does not require an inventive effort, the PTO should not issue patents for genes (Hettinger 1995).In the same regard, because genes are discoveries and not new compositions, genes should not be patented because they are not novel, as required by section 102. For example, human genes have existed as long as the existence of humanity therefore, an inventor can never discover a gene and claim that it is novel (Hettinger 1995). Finally, carrying patent law to its extreme, some argue that anyone containing patented genes within his or her body could be considered an infringer, because he or she is using a patented gene merely by being alive.Some argue that because of recent advances in the isolation, puri fication, and sequencing of genes, (Birren & Rommens 1999) it may take only a few days to determine the sequence of a particular gene. Therefore, the relative ease of determining the sequence of a particular gene should preclude patenting of the gene because obtaining the sequence is obvious. There is a difference between patents on compositions and patents on processes. Patents on compositions are considered broader than patents on processes because patents on compositions can cover all processes that use the composition.In order to limit the number of patents for genes, some argue that the PTO should limit patents on genes to processes that utilize the genes, and not the composition of the genes themselves, ESTs a case in localise (Auth 1997). In the US patent system, an inventors reward for an invention is the receipt of a patent, which permits the inventor to exclude others from making, using, selling, or importing the invention. The inventor can use this right to exclude to co mmercialize the invention or to license the invention and receive royalties.The reward of a patent thereby encourages invention and discovery, and the PTO takes the opinion that the incentive to make discoveries and inventions is generally spurred by patents. Some may argue that research and discovery satisfies an intellectual curiosity, and as such, hardly qualifies as labor. Therefore, intellectual endeavors, such as research and discovery, do not require rewards. Nevertheless, Congress designed our patent system with the underlying premise that reward is required, and it is difficult to envision why the law should distinguish the discovery of genes from other discoveries in this regard.Another argument is that the patenting of genes discourages others from performing research and discovery (Hoffert 1998). Under our patent system, after a researcher discovers and patents a gene, the researcher, as an inventor, may exclude others from using the gene (Sturges 1997). When a second researcher studies a particular disease and the patented genes role in that disease, it may be difficult to design an experiment that does not require the gene. In order to use the gene, the second researcher must seek a license from the patentee, doubtless requiring a fee in the form of a royalty.Some argue that this is a waste of valuable resources that could be used for research, rather than royalties, and therefore all human genes should be in the public domain (Bruce 2000). This is a compelling argument because it is difficult for a molecular biologist studying a particular gene or protein to conceive of experiments that do not require use of the gene itself. In this regard, perhaps it is better to view this perceived problem not as creating a disincentive to invent, but rather as impeding scientific progress. However, this argument is not unique to the patenting of genes.In fact, one could argue that a patent on any invention might similarly impede scientific progress. Ethica l arguments is the most difficult to marshal and telephone. As such, this author will briefly address only the two most common arguments against the patenting of genes. One of the most common ethical arguments is that the government should not issue patents on human genes because genes belong to all humankind, and therefore no single group should have the exclusive property right to exclude others from their use (Doll 2001).However, gene patents are not owned in the same sense as property is owned. A patent is intangible property (Haseltine 2000), and therefore, granting a patent on a human gene does not deprive humankind of property in the traditional or tangible sense. A gene patent only deprives other researchers, often attempting to realize a financial gain, from its use. The second most common argument against the patenting of human genes is that researchers derive a human gene from a human being, which violates our societys 150-year prohibition on valet de chambre having pro perty rights in another human being.However, should a human gene qualify as a human being or a funding entity? The U. S. Supreme Court has offered a potential framework for analyzing whether a gene should qualify as a living entity. In Roe v. Wade, the Court held that the State did not have a compelling interest in proscribing abortion where a fetus was not viable (Nature 2003). While we cannot equate a womans right to seek an abortion with an inventors right to patent a biological product, the viability test may have applicability in determining whether a human gene qualifies as a living entity.The viability test established by Roe v. Wade was whether the fetus could have a meaningful life outside the mothers womb. Human genes fail this test for viability because human genes are inanimate compositions of matter. Even with all the recent scientific advances, creation of a human being in vitro from the entire human genome is scientific fantasy (Mappes & DeGrazia 2001). However, even if human genes are not viable, some may argue that patents should not be issued for genes for the same reason that it is unratified to market other human products such as organs (Justine & Harris 2002).Clearly, society believes that some human products should not be for sale, although, society somewhat relaxes this policy by allowing one to donate certain bodily fluids, such as plasma, for money. The underlying concern for this ban on the sale of organs may be to protect those that are impoverished from sacrificing vital organs for financial gain, but this policy is not particularly applicable to the patenting of human genes. First, one can argue that patenting of genes is discriminable in that there is not a market for genes similar to the market for human organs.Second, one may be able to isolate, amplify, and sequence a gene from a single cell (Overwalle 2007). Thus, a patentee that patents his or her own genes is not deprived of a vital organ in the same way as an organ donor . Undoubtedly, there are additional ethical arguments against the patenting of genes. Ultimately, however, society determines what is ethical, and consequently whether the patenting of genes meets our ethical standard. The impact on the economy if gene patenting was banned is still a measure of debate. Most advocates in the biotech lobby are of the view that it may discourage investment in genetic research.Even so it is important to realize that the expense of identifying the function of a particular gene is only a small fraction of the total cost of turning it into something viable such as a drug. There is also an argument which says that the pharmaceutical industry would perform better if scientists and companies could work freely with any genes and rather focus their energies on patenting drugs. Since 1953, when Watson and Francis Crick spy the double helical structure of DNA in chromosomes, scientists have known that the sequence of compounds called nucleotides along the DNA st rands was the key to their information content.These gene sequences encoded instructions on manufacturing and controlling protein products that build, manage and organize everything in the cell. Biotechnology and pharmaceutical companies with high stakes in patenting genetically engineered products and their sequences have registered multiple patents over the last two decades to exploit that discovery for commercial use to make new products. List of References Battle Over Gene Patents The Legal, Economic, and Social Implications of Licensing the Core of Life Could Alter the certain Patent System. (1996). Business Week -New York, NY. 3484 56-59. Gene Patents and the Public Good. Nature. 423. 6937 (2003). Auth, D. R. (1997). Are ESTs Patentable? Nature Biotechnology. 15. 9 911-912 Birren, B. , & Rommens, J. M. (1999). Resource BOOK AND JOURNAl REVIEWS Genome Analysis A Laboratory manual (Vol 1) Analyzing DNA (Vol 2) Detecting Genes. Trends in Genetics. 15, 41. Bruce D. (2000). E thical concerns about patenting in relation to living organisms. Human Reproduction and Genetic Ethics. 6, 10-4. Doll, JJ. (2001). Talking Gene Patents.Scientific American. 285. 2 Eisen, A. , & Laderman, G. (2007). Science, religion, and society an encyclopedia of history, culture, and controversy. Armonk, N. Y. , M. E. Sharpe. Haseltine, W. A. (2000). The Case for Gene Patents. Technology Review -Manchester NH 103, 59. Hettinger N. (1995). Patenting life biotechnology, intellectual property, and environmental ethics. Boston College Environmental Affairs honor Review. Boston College. Law School. 22, 267-305. Hoffert, S. P. (1998), PTO Issues Biotech Patent Guidelines, The Scientist, July 6.Justine B. & Harris J. (2002). A Companion to Genethics. Blackwell companions to philosophy, 21. Malden, MA Blackwell Publishers, 2002. Mappes, T. A. & DeGrazia D. (2001). Biomedical Ethics. Boston McGraw-Hill. Overwalle, G. V. (2007). Gene patents and public health. Brussel, Bruylant. Sturges, M . L. (1997). Who Should Hold Property Rights to the Human Genome? An Application of the Common hereditary pattern of Humankind. American University International Law Review. 13, 219-261. Willing, R. (2000). Gene Patent Gets Tougher, USA Today, Nov. 15, at 14A.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.